Abstract

5,10,15,20-Tetra(N-methyl-pyridinium-4-yl)-21H,23H-porphyrin has shown to bind to the major groove of AT-rich DNA predominantly through electrostatic interaction between positively charged N-methyl pyridinium moieties of the porphyrin and negatively charged phosphodiester backbone. Solution structure of the complex between the porphyrin and a double-stranded DNA fragment has been inferred from the measurements of the mixing time-dependent intermolecular nuclear Overhauser effects (NOEs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.