Abstract
By determining membership function of the input parameters and selecting defuzzification method, the evaluation model which can be used to intelligent analyzing the causes of SMT solder joint defects was set up. The fuzzy neural network was trained by using the output variables of the training samples from intelligent discrimination as the input variables of training samples of fuzzy neural network. The fuzzy neural network was tested by using the output variables of the testing samples from intelligent discrimination as the input variables of testing samples of fuzzy neural network. The results show that by using the evaluation model the cause of SMT solder joint defects can be analyzed intelligently and the results of intelligently analysis are reasonable, the evaluation model can be used practically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.