Abstract

The molten salt reactor (MSR) has received much recent attention. The presence of beryllium and the mixing of actinides with light nuclei in the fuel salt result in a relatively strong neutron source that can affect the surveillance at subcritical and transient characteristics during operation. In this study, we predict the inherent neutron sources based on a MSR model. The calculation shows that in the fresh core, the inherent neutron sources are mainly from alpha-induced neutrons. After power operation, the inherent neutron sources become remarkably stronger due to photoneutrons. Although being an insignificant part in the total neutron population during operation, the inherent neutron sources can be used as the installed neutron source after shutdown. If the MSR has continuously operated at full power (2 MWt) for 10 days, then there would be no need for the installed source within 80 days after shutdown. After operating constantly for 500 days, the installed neutron source can be eliminated within 2 years after shutdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.