Abstract

Aerosol vertical distribution is decisive and hard to be constrained. It is of great significance for the study of atmospheric climate and environment. Oxygen absorption A-bands (755–775 nm) provide a unique opportunity to acquire vertical aerosol profiles from satellites over a large spatial coverage. To investigate the ability of O2 A-bands in retrieving aerosol vertical distribution, the dependence of retrieval on satellite observation geometry, spectral resolution, signal-to-noise ratio (SNR), size distribution, and a priori knowledge is quantified using information content theory. This work uses the radiative transfer model UNL to simulate four aerosol modes and the instrument noise model. The simulations show that a small scattering angle leads to an increase in the total amount of observed aerosol profile information, with the degrees freedom of signal (DFS) of a single band increasing from 0.4 to 0.85 at high spectral resolution (0.01 nm). The total DFS value of O2 A-bands varies accordingly between 1.2–2.3 to 3.8–5.1 when the spectral resolution increases from 1 nm to 0.01 nm. The spectral resolution has a greater impact on DFS value than the impact from SNR (an improvement of roughly 41–53% resulted from the change in spectral resolution and the SNR led to 13–18%). The retrieval is more sensitive to aerosols with a coarse-dominated mode. The improvement in spectral resolution on information acquisition is demonstrated using the DFS and the posterior error at various previous errors and resolutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call