Abstract

This paper studies the indefinite stochastic linear quadratic (LQ) optimal control problem with an inequality constraint for the terminal state. Firstly, we prove a generalized Karush-Kuhn-Tucker (KKT) theorem under hybrid constraints. Secondly, a new type of generalized Riccati equations is obtained, based on which a necessary condition (it is also a sufficient condition under stronger assumptions) for the existence of an optimal linear state feedback control is given by means of KKT theorem. Finally, we design a dynamic programming algorithm to solve the constrained indefinite stochastic LQ issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.