Abstract

Nowadays, the application of using industrial robots in manufacture is a diminutive due to its own low rigidity and low stiffness. This leads to high level of vibrations that limits the quality and the precision of the workpiece. So they are usually used for welding, grinding and paint shop. However, the potential of industrial robot applications in machining has be realized. The volume of monolithic components is large and there are many issues in machining process such as geometric tolerance and quality of machined surface. In such cases the traditional CNC machine is replaced by industrial robots, which will reduce the production cost, reduce labor and increase the efficiency. In this paper, the milling experiment of 7050-T7451 aeronautical aluminum alloy was carried out by using industrial robot KR210 R2700. In addition, the experiment was employed to study the influence of milling speed, feed-rate, cutting depth and cutting width on vibrations, surface roughness was also measured to evaluate the machining quality. Besides, the axis of angle was changed which led to the different industrial robot’s postures. The vibration signal of different postures was acquired, which was used to analysis the optimal workspace of industrial robot. The best process parameters were obtained, which will play a guiding significance on the actual production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.