Abstract
In order to improve the proton conductivity and anti-fouling of proton exchange membrane (PEM) in microbial fuel cells, the present study prepares a novel composite proton exchange membrane. First, silicon dioxide (SiO2) is inserted into sulfonated graphene oxide (SGO) by in situ hydrolysis using ethyl orthosilicate as precursor. Then, the obtained SGO@SiO2 is blended with homopolymer poly(-vinylidene fluoride) grafted sodium styrene sulfonate (PVDF-g-PSSA). The effects of particles on the physicochemical properties and anti-fouling properties of the composite membrane are investigated. The best performance is obtained when the addition of SGO@SiO2 is 1.0%. The ion exchange capacity reaches 1.6 meq/g and the proton conductivity is 0.078 S/cm, which is higher than Nafion-117 membrane. The anti-fouling ability of composite membrane gets stronger based on the quartz crystal microbalance with dissipation (QCM-D) result. The power density of microbial fuel cell with SGO@SiO2/PVDF-g-PSSA membrane is 185 mW/m2 after operating one month, which is superior to SGO/PVDF-g-PSSA and PVDF-g-PSSA membrane. The improvement shows that SGO@SiO2/PVDF-g-PSSA membrane could be a feasible alternative to costly membrane and have potential for application in microbial fuel cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.