Abstract
This study aims to integrate data-driven methodologies with user perception to establish a robust design paradigm. The study consists of five steps: (1) theoretical research—a review of the subject background and applications of Kansei engineering and gray relational analysis (GRA); (2) algorithmic framework research—the discussion delves into the intricate realm of Kansei engineering theory, accompanied by a thorough elucidation of the gray relational analysis (GRA) algorithmic framework, a crucial component in constructing a fuzzy logic model for product image modeling; (3) Kansei data collection—18 groups of perceptual words and six classic samples are selected, and the electric recliner chair samples are scored by the Kansei words; (4) Kansei data analysis—morphological analysis categorizes the electric recliner chair into four variables. followed by the ranking and key consideration areas of each area; (5) GRA fuzzy logic model verification—the GRA fuzzy logic model performs simple–complex (S-C) imagery output on 3D models of three modeling instances. By calculating the RMSE value of the seat image modeling design GRA fuzzy logic model, it is proven that the seat image modeling design GRA fuzzy logic model performs well in predicting S-C imagery. The subsequent experimental study results also show that the GRA fuzzy logic model consistently produces lower root mean square error (RMSE) values. These results indicate the efficacy of the GRA fuzzy logic approach in forecasting the visual representation of the electric recliner chair shape’s 3D model design. In summary, this research underscores the practical utility of the GRA model, harmoniously merged with perceptual engineering, in the realm of image recognition for product design. This synergy could fuel the extensive exploration of product design, examining perceptual engineering nuances in product modeling design.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.