Abstract
Thermal effect becomes more prominent in the laser gain medium, to overcome this problem, the forced convective heat transfer with reliability and durability is widely used. The hydro-structures of dimensions of the flow channel affect the thermal performance immediately and efficiently. In this paper, with proposed cooling configuration based on longitudinal forced convective heat transfer, the factors of flow rate, state of flow field and surface roughness are investigated. The results reveal that fully developed flow state, higher flow rate and rougher surface lead to a better cooling capability. In the simulation results with 30 L/min flow rate, the calculated averaged convective heat transfer coefficient is as high as 104 W/m2 ·K, and with slightly fluctuations in fully developed flow period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.