Abstract

A theory for generating an ultra-high voltage using a flame column (weakly ionized plasma) and a normal high-voltage (HV) power supply is presented. A high-voltage generator adapted based on this theory was fabricated, and experiments on high voltage generation were carried out. As a result, high voltages were observed between an electron cloud in front of the flame column and the positive electrode in the experiment, and highly positive charges were stored efficiently on the large positive electrode. The experimental results proved that the output voltage is three times higher than that of the output voltage of the HV power supply whenever the gas flow velocity is close to 0. A maximum output voltage was obtained for the output voltage of the HV power supply, which was 15 times higher than the output voltage of the HV power supply. The generated voltage and the output current for the output voltage of the HV power supply were investigated, and the temporal dependence of the charging current was also measured. The use of this method made it possible to obtain a high voltage and high electric field in a large space. Furthermore, the realistic possibility of achieving a 10-MV using this method was shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call