Abstract

Abstract In power modules using SiC devices, high temperature operation is expected. Therefore, a bonding technology having high temperature resistance of 250°C or more is required. In recent years, research on low temperature sintering bonding by Ag nanoparticles, Cu nanoparticles and sub-micron particles has been conducted as a new bonding technology corresponding to SiC power devices. Nanoparticles are sintered at a temperature much lower than the sintering temperature in ordinary powder metallurgy. We focus on Ni having high melting point and excellent corrosion resistance as a new bonding material and are conducting research on high temperature resistant interconnection technology using Ni nanoparticles. We have found that bonding is possible at a bonding temperature of 400°C or less and enable to interconnect SiC devices for high temperature operation. However, there are still following problems to be improved, as follows, especially for a large chip size : Voids formed in the bonding layer and cracks generaled stress caused by a difference in thermal expansion coefficient(CTE). In this paper, we propose a bonding material of composite paste in which Ni nanoparticles and Al particles are mixed. From the results of the research, it was found that the occurrence of cracks and gas void was suppressed by mixing Al particles. Also the thermal stress analysis by FEM, the addition of Al particles shows to reduce the thermal stress during thermal cycle test (TCT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.