Abstract

Platinum-clad nickel composite wires with platinum layer thicknesses of 5 μm and 8 μm were prepared by a cladding drawing process. Oxidation experiments were performed using a muffle furnace at temperatures of 500 °C, 600 °C, 700 °C, and 800 °C for 1 h, 2 h, and 3 h. The oxidized samples were examined for high-temperature oxidation behavior using scanning electron microscopy (SEM) with an energy-dispersive X-ray (EDX) spectrometer attached. The results showed that the interface bond between the platinum cladding and the nickel core wire was serrated and that the thickness of the platinum cladding was not uniform. At low temperatures (500 °C and 600 °C), the diffusion rate of the nickel was low. The composite wire could be used for a short time below 600 °C. When the temperature reached 700 °C and above, the nickel diffused to the surface of the composite wire and was selectively oxidized to form a nickel oxide layer. The research results provide a theoretical reference for the selection of a service temperature for platinum-clad nickel composite wires used as the lead material for thin-film platinum resistance temperature sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call