Abstract

In present experiment, the vapor mixture with different velocities (2m⋅s−1, 4m⋅s−1) and different ethanol mass fraction (0.5%, 1%, 2%, 5%, 10%, 20%, 50%) flew through vertical micro-tube and condensed on the outer tube surface at pressure 31.16kPa, 47.36kPa. The condensation modes were observed by CCD camera, and the characteristics of the heat transfer coefficients versus the vapor-to-surface temperature differences for different experimental conditions were obtained. The condensation heat transfer coefficients of vapor mixture decrease with the vapor concentration increasing. The maximum peak value of heat transfer coefficients, up to 39 kW⋅m−2⋅K1, which was about 3-4 times greater than that of steam, appeared when the ethanol mass fraction was 2%. A heat transfer coefficient correlation including the effects of all the tested parameters is proposed by using the multiple linear least squares method based on the experimental data. The calculated values agreed well with the experimental data and the deviations between them were from −20% to 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call