Abstract

This paper mainly aims at revealing the nature of the galloping oscillation of iced catenary system under cross winds. The aerodynamic force on the iced catenary system is assumed to be quasi-steady, and then the quasi-steady aerodynamic lift and drag coefficients are completed in FLUENT. By fitting the discrete simulation data, the expression of the vertical aerodynamic force is further obtained. According to the Den Hartog vertical galloping mechanism, the stability of iced catenary is discussed and the initial icing angle corresponding to the critical stability is obtained. On this basis, the dynamic model of the simple iced catenary system under cross winds is established. The partial differential vibration equation of the system is converted into the ordinary differential equation by the Galerkin method and then numerically solved. The condition of the unstable catenary motion in simulation is in agreement with that from theoretical stability analysis. In addition, the effects of structural damping, initial icing angle, and wind velocity on the system responses are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.