Abstract

Friction during contact between metals can be very complex in pulse current-assisted forming. Based on stamping process characteristics, a reciprocating friction tester was designed to study the friction characteristics between AA7075 aluminum alloy and P20 steel under different current densities. Origin software was used to process the experimental data, and a current friction coefficient model was established for the pulse current densities. The results show that the friction coefficient of the aluminum alloy sheet decreased with the increase in the pulse current density (2–10 A/mm2). After that, the friction mechanism was determined by observing microscopic morphology and SEM: some oxide cracked on the friction surface when the current was large. Finally, finite element simulations with Abaqus software and a cylindrical case validated the constant and current friction coefficient models. The thickness distribution patterns of the fixed friction coefficient and the current coefficient model were compared with an actual cylindrical drawing part. The results indicate that the new current friction model had a better fit than the fixed one. The simulation results are consistent with the actual verification results. The maximum thinning was at the corner of the stamping die, which improved the simulation accuracy by 7.31%. This indicates the effectiveness of the pulse current friction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.