Abstract

Cr–Mo steel is often used as the material of the hydrogen storage vessel, but its ductility can be deteriorated by high pressure hydrogen, which makes it possible that the local area of strain concentration on the hydrogen storage vessel made of Cr–Mo steel may fail due to excessive plastic deformation. The limit criterion of local strain established according to the study of the fracture strain is the basis for local failure assessment of the vessel. However, the correlation between the fracture strain and the stress state of Cr–Mo steel in high pressure hydrogen is still unclear, so the limit criterion of local strain for hydrogen storage vessel made of Cr–Mo steel has not been established. In this paper, the slow strain rate tensile test (SSRT) of notched specimens with different notch sizes was carried out in air, 45 MPa hydrogen and 100 MPa hydrogen, respectively. Based on the test results, the whole process from tensile to fracture of the specimens was simulated by finite element method. The distribution of stress triaxiality and plastic strain during the tensile process was analyzed, and the correlations between the stress triaxiality and the fracture strain in different environments were obtained. Finally, the limit criterion of local strain for local failure assessment of 4130X hydrogen storage vessel was established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call