Abstract
We interrogated C7H produced from reactions C4 + C3H2/C4H + C3H → C7H + H using both translational and photoionization spectroscopy. Reactants C3H, C3H2, C4, and C4H were synthesized in two crossed beams of 1% C2H2/He ignited by pulsed high-voltage discharge. The individual contributions of reactions C4 + C3H2 and C4H + C3H to product C7H were evaluated as 17:83 from reactant concentrations in both molecular beams. The translational energy distribution, the angular distribution, and the photoionization efficiency curve of product C7H were unraveled. C7H was identified as the most stable linear isomer by its photoionization efficiency curve that features two ionization thresholds corresponding to separate transitions to singlet and triplet states of l-C7H+. The quantum-chemical calculations indicate that the associations of C4 with C3H2 and C4H with C3H incur no entrance barriers, and the most favorable exit channel leads to product l-C7H + H. It is the first time demonstrating that C7H is producible from reactions 1,3C4 + 1C3H2 and 2C4H + 2C3H on the lowest-lying singlet and triplet potential energy surfaces of 1,3C7H2. This work implies that the reactions of C4 + C3H2 and C4H + C3H might have contributions to interstellar C7H to some extent as compared with the C + C6H2 reaction commonly adopted in an astrochemical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.