Abstract

High-pressure and dense-phase pneumatic conveying of pulverized coal is a key technology in the field of large-scale entrained bed coal gasification. Flow regime plays an important role in two-phase flow because it affects not only flow behavior and safety operation, but also the reliability of practical processes. Few references and experiences in high-pressure and dense-phase conveying are available, especially for the flow regimes. And because of the high stickiness and electrostatic attraction of pulverized coal to the pipe wall, it is very difficult to make out the flow regimes in the conveying pipe by visualization method. Thus quartz powder was chosen as the conveyed material to study the flow regime. High-speed digital video camera was employed to photograph the flow patterns. Experiments were conducted on a pilot scale experimental setup at the pressure up to 3.6MPa. With the decrease in superficial gas velocity, three distinguishable flow regimes were observed: stratified flow, dune flow and plug flow. The characteristics of pressure traces acquired by high frequency response pressure transmitter and their EMD (Empirical Mode Decomposition) characteristics were correlated strongly with the flow regimes. Combining high-speed photography and pressure signal analysis together can make the recognition of flow patterns in the high-pressure and dense-phase pneumatic conveying system more accurate. The present work will lead to better understanding of the flow regime transition under high-pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call