Abstract

The problem of the degradation rate being too slow is a key technical bottleneck to clinical applications for pure iron (Fe), a promising candidate biodegradable metal. This work used powders of pure Fe and graphene oxide (GO) to prepare Fe-xGO composites (x = 0.4 wt.%, 0.8 wt.%, 1.2 wt.%, and 1.6 wt.%) via selective laser melting (SLM), aiming to obtain a higher degradation rate. The microstructure, hardness, biodegradation and cytocompatibility were investigated. The degradation rate of the SLMed Fe-xGO composites was faster than that of SLMed Fe, due to incorporating GO into Fe. The GO content had a significant effect on the microstructure, hardness and degradation rate. The SLMed Fe-0.8 GO composite presented the finest, relatively uniform grains, had the maximum degradation rate, density and hardness, and had good cytocompatibility. The mechanisms were also clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call