Abstract

This work aims to investigate whether an amorphous surface layer can be obtained when as-cast Fe49Cr18Mo7B16C4Nb3 alloy is submitted to pulsed Nd:YAG laser surface melting. The experiments were conducted in the various laser scanning speeds. The microstructures of laser treated zones were investigated by X-ray diffraction XRD and Field Emission Scanning Electron Microscope (FESEM) and their microhardness were measured, too. The chemical composition of different points of each sample was analyzed by energy-dispersive X-ray spectroscopy EDS. Although the estimated cooling rates in surface layers were higher than the required cooling rate to achieve full amorphization, but the present experiments were unable to retain complete glassy microstructure on surface and a mixture of amorphous (low volume fraction) and ultrafine grained phases were produced in surface of samples. Based on the findings, it was understood that the overlapping of successive pulses and element redistributions occurred in pulsed laser melting could severely restrict amorphization. The influence of laser scan speed and laser power on heat input, melting ratio, compositional changes and cracking in laser treated zone were discussed separately. It is suggested that the limited range of laser variables in pulsed Nd:YAG laser melting may help to produce a sound amorphous phase of as-cast Fe49Cr18Mo7B16C4Nb3 alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.