Abstract
The propulsion system in a spacecraft is an important subsystem for orbit transfer and attitude control. A fast and accurate fault diagnosis system contributes to the safety of the entire system. As the system becomes more complex, identifying faults, their locations, and root causes becomes increasingly difficult. This study utilized Principal Component Analysis (PCA) and feature optimization with Fast Fourier Transform (FFT) analysis using greedy algorithm to achieve fault diagnosis systems for spacecraft to replace the current operation based on the expert knowledge. By applying PCA to simulation data for the faults were successfully detected and their locations and root causes identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.