Abstract

Pumps are a key and crucial part of many industrial units which usually are endangered by metallurgical, mechanical, and chemical damages. The most important mechanisms of failure in pumps are cavitation, erosion, and corrosion which directly are influenced by pump’s materials, type of fluent, and operation condition. The aim of this study was to investigate the role of material selection in the main failure mechanisms of a power plant booster pumps. To observe the kind and micro structure of pumps optical microscopy and image analyses software were used. Morphology of the pumps’ body is investigated by scanning electron microscopy. Electrochemical tests and water analyses are done for measurement of corrosion rate as well as amount of particles in feed water. Moreover, tensile testing was carried out to compare the mechanical properties of body alloy with standard alloy. The results revealed that cavitation and erosion were the most significant mechanisms. On the other hand, the data from analyses and observations clarified that the material which chosen for pumps alloy was improper which was accompanied with lack of fabrication technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call