Abstract

The fabrication of a large Al-4.5wt%Cu-0.5wt%Mn wheel with 670mm diameter by indirect squeeze casting process was studied. The casting system including modified hydraulic press and die structure was introduced, and the casting procedures was designed and described. The filling behavior of the casting process was simulated with software Flow3D. It was found that while flowing from spoke to rim, turbulence flow of liquid melt in the vicinity of free surface was found, and that at the end of the filling, the unwanted solidification might occur. To reduce the turbulent flow and the unwanted solidification, a modified injection condition was proposed. The simulation results with the modified injection indicated that the turbulence was prevented and the unwanted solidification during the filling was reduced as well. The squeeze wheel castings were fabricated with the modified injection condition. Cross sections of the castings were checked. A number of specimens were obtained from different parts of the castings to evaluate microstructure of the wheel, and both high density and fine grain microstructures were found in the specimens. Mechanical properties of the tensile samples from the wheels with T5 heat treatment were measured. The average tensile strength and elongation were 390 MPa and 10%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.