Abstract
To prevent high density polyethylene (HDPE) dust explosions, this study evaluated HDPE's explosive sensitivity characteristics, and comparatively examined two inert dust types (CaCO3 and NaHCO3) to mitigate the explosive sensitivity of HDPE dust. In the serials of experiments, the 1.2 L Hartmann tube and Godbert-Greenwald furnace were used respectively to measure the minimum ignition energy (MIE) and minimum ignition temperature (MIT) of HDPE dust. The findings demonstrated that the MIE and MIT of HDPE are 56.8 mJ and 320 °C under the most sensitive situation. Second, both CaCO3 and NaHCO3 can inhibit the explosive sensitivity of HDPE with the variation of several parameters (i.e., quality percentage and particle sizes). Specially, as the quality percentage of 38–48 μm NaHCO3 come to 70%, the HDPE/NaHCO3 will not be explosive. Finally, NaHCO3 had a better inerting effect than CaCO3 in the reduction of explosive sensitivity of HDPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Loss Prevention in the Process Industries
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.