Abstract

To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call