Abstract
Abstract Investigation of the eutectic reaction in a core disruptive accident of sodium cooled reactor is of importance since reactor criticality will be affected by the change in reactivity after eutectic reaction. In our previous study, a two-dimensional fast reactor safety analysis code, SIMMER-III, was extended to include a physical model to simulate the eutectic reaction between stainless steel (SS) and B4C. Based on experimental knowledge on eutectic reaction, the growth of eutectic material was modeled according to a parabolic rate law. Heat and mass transfer behaviors among reactor materials including a eutectic composition in solid and liquid phases were also modeled considering both equilibrium and non-equilibrium processes in phase change. Physical properties of the eutectic composition were also formulated based on experimental measurements for 5 mass% B4C-SS composition. In this study, we extended the eutectic reaction model to SIMMER-IV, a three-dimensional counterpart of SIMMER-III. We performed validation analysis using SIMMER-III and SIMMER-IV with the developed model based on an experiment, where a B4C pellet was immersed into a molten SS pool. Boron concentration in the pool was measured at several time points and the boron concentration after solidification of the molten pool was compared with the experiment post analysis result. Simulation results of boron distribution are comparable to the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.