Abstract

Aspheric surfaces are important to the optical systems and need high precision surface metrology. Stylus profilometry is currently the most common approach to measure axially symmetric elements. However, if the asphere has the rotational alignment errors, the wrong cresting point would be located deducing the significantly incorrect surface errors. This paper studied the simulated results of an asphere with rotational angles around X-axis and Y-axis, and the stylus tip shift in X, Y and Z direction. Experimental results show that the same absolute value of rotational errors around X-axis would cause the same profile errors and different value of rotational errors around Y-axis would cause profile errors with different title angle. Moreover, the greater the rotational errors, the bigger the peak-to-valley value of profile errors. To identify the rotational angles in X-axis and Y-axis, the algorithms are performed to analyze the X-axis and Y-axis rotational angles respectively. Then the actual profile errors with multiple profile measurement around X-axis are calculated according to the proposed analysis flow chart. The aim of the multiple measurements strategy is to achieve the zero position of X-axis rotational errors. Finally, experimental results prove the proposed algorithms achieve accurate profile errors for aspheric surfaces avoiding both X-axis and Y-axis rotational errors. Finally, a measurement strategy for aspheric surface is presented systematically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call