Abstract

Compound semiconductors, composed of two or more elements, differ from single-element semiconductors like silicon. These materials are crucial because they have a direct band gap, unlike elemental semiconductors such as silicon and germanium, making them ideal for optoelectronic applications like LEDs, semiconductor lasers, and photo detectors. Robots rely on sophisticated sensors to collect vital data for their operation, including internal data on temperature, moisture, movement, and position, as well as external data from images, infrared light, and sound, processed through semiconductor units. Compound semiconductors are integral to numerous technologies around us, including electric cars, solar panels, satellites, spacecraft, and smart phones. Future innovations like driverless cars and artificial intelligence will also heavily depend on these materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.