Abstract

With increasing energy consumption in urban rail transit systems, researchers have paid significant attention to energy-saving train control. In this paper, we propose an effective train trajectory optimization method to reduce the energy consumption based on coasting control, in which coasting control regimes are added to balance running time and energy consumption. For better determining the starting points of coasting control regimes, the whole train running process is divided into several subintervals. Then, aiming to achieve energy efficiency, coasting regimes are added to the subintervals with high energy-saving effects, in which more energy consumption can be reduced with the same running time addition. Based on this, a coasting control method is proposed to generate energy-saving trajectories considering train dynamics, safety, and punctuality. In addition, the proposed method can solve the multisection energy-saving train trajectory optimization problem to obtain optimal running time schemes and related trajectories. Finally, numerical examples based on one of the Beijing metro lines are implemented to verify the effectiveness of the proposed method. The results show that, for the single-section train control problem, the proposed coasting control algorithm can achieve significant energy-saving effects compared to the practical trajectory and calculate energy-saving trajectory in shorter computation times compared to the dynamic programming method. Meanwhile, for the multisection train control problem, energy consumption can be further reduced by optimizing trajectories and running times integratedly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.