Abstract
The demand for production of cements is ever increasing to meet the infrastructure development globally. The energy and emission factors available for cements in most of the life cycle assessment (LCA) databases may not exactly suit for all the geographical locations. The main challenge in Indian scenario is the absence of database for LCA study. This study attempts to develop the energy and emission factors for the manufacturing of cements in Indian context. In the present study, five different cement manufacturing plants located in north, south, east, west and central zones of India are considered to assess the energy dissipation and carbon dioxide emission involved during the production of ordinary Portland cement (OPC). Most of the data is collected from the field, so that the energy and emission factors determined will be suitable for the zonal study. The study is then extended to assess the energy consumption and carbon dioxide emission for three blended cements, viz. Portland Pozzolan cement (PPC), Portland slag cement (PSC) and composite cement (CC) with permissible known replacement levels of fly ash, granulated blast furnace slag and both fly ash and slag, respectively. The average energy use and carbon emission is found to be on higher side in India by 15.14% and 12.64%, respectively, compared to other countries in manufacturing of cements. An average energy consumption in manufacturing of PPC, PSC and CC is found to be respectively 24.5%, 35.3% and 43.13% less compared to that of OPC. The CO2 emission intensity for OPC is found to vary between 893 and 940kg/tonne of cement from five different zones, and an average of respectively 24.8%, 40.97% and 47.18% lower CO2 emission was observed from PPC, PSC and CC compared to OPC. From the inventory results, CC has proven to be a more sustainable cement with low energy consumption and lower CO2 emission compared to other cements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.