Abstract
Reactive Materials (RMs), a new material with structural and energy release characteristics under shock-induced chemical reactions, are promising in extensive applications in national defense and military fields. They can increase the lethality of warheads due to their dual functionality. This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading. Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs, temperature distribution, peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material (RM) warhead casings by using high-speed camera, infrared thermal imager temperature and peak overpressure testing and scanning electron microscope. Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings. The RM casings can improve the peak overpressure of the air shock wave under explosion loading, though the results are different with different charge ratios. According to the energy release characteristics of the RM, increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave, while reducing the thickness will increase the peak overpressure of the far-field air shock wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.