Abstract

The discovery of new anti-cancer drugs targeting the PD-1/PD-L1 pathway has been a research hotspot in recent years. In this study, biological affinity ultrafiltration (BAU), UPLC-HRMS, molecular dynamic (MD) simulations and molecular docking methods were applied to search for endogenous active compounds that can inhibit the binding of PD-L1 to PD-1. We screened dozens of potential cancer related endogenous compounds. Surprisingly, cyclic adenosine monophosphate (cAMP) was found to have a direct inhibitory effect on the PD-1/PD-L1 binding with an in vitro IC50 value of about 36.4 ± 9.3 μM determined by homogeneous time-resolved fluorescence (HTRF) assay. cAMP could recover the proliferation of Jurkat T cells co-cultured with DU-145 cells and may suppress PD-L1 expression of DU-145 cells. cAMP was demonstrated to bind and induce PD-L1 dimerization by FRET assay, and also predicted by MD simulations and molecular docking. The finding of cAMP as a potential inhibitor directly targeting the PD-1/PD-L1 interaction could advance our understanding of the activity of endogenous compounds regulating PD-L1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.