Abstract

AbstractLinear low‐density polyethylene was blended with soya powder, and the blends were compatibilized with epoxidized natural rubber having 50 mol% of epoxidation. The content of soya powder was varied from 0 to 40 wt%. The blends were irradiated at 30 kGy with an electron beam. Degradation of the irradiated blends was evaluated by exposing the samples to an outdoor environment according to ISO 877.2. The degradation was monitored by changes in the tensile, morphological, and thermal properties, as well as the molecular structure and weight loss. The tensile strength and elongation at break (Eb) of the exposed samples decreased as a function of exposure period. The irradiated blends exhibited higher retention of tensile strength and Eb than nonirradiated blends after 1 year of exposure. The crystallinity of the irradiated blends increased upon exposure, though the nonirradiated blends showed higher crystallinity indicating higher degradability. Weight loss of the irradiated blends showed less change after 6 months of outdoor exposure, but significant change was observed after 1‐year exposure. The molecular weight changes of the irradiated blends exhibited the same trend as weight loss. All the results confirmed that the degradability of the irradiated blends was comparable to that of the nonirradiated blends upon long‐term outdoor exposure. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.