Abstract

We study the linear analysis of electrohydrodynamic capillary instability of the interface between a viscous fluid and viscoelastic fluid of Maxwell type, when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface, and when fluids are subjected to the radial electric field. Here, we use an irrotational theory known as viscous potential flow (VPF) theory in which viscosity enters through normal stress balance but shearing stresses are assumed to be zero. A quadratic dispersion relation that accounts for the growth of axisymmetric waves is obtained and stability criterion is given in terms of a critical value of wave number as well as electric field. It is observed that the radial electric field has dual effect on the stability of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.