Abstract

Thermal noise in high-reflectivity mirror coatings is a limiting factor in ground-based gravitational wave detectors. Reducing this coating thermal noise improves the sensitivity of detectors and enriches the scientific outcome of observing runs. Crystalline gallium arsenide and aluminum-alloyed gallium arsenide (referred to as AlGaAs) coatings are promising coating candidates for future upgrades of gravitational wave detectors because of their low coating thermal noise. However, AlGaAs-based crystalline coatings may be susceptible to an electro-optic noise induced by fluctuations in an electric field. We investigated the electro-optic effect in an AlGaAs coating by using a Fabry-Perot cavity, and concluded that the noise level is well below the sensitivity of current and planned gravitational-wave detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.