Abstract

This work centered on the double-toggle clamping mechanism with diagonal-five points for the high-speed precise plastic injection machine. Based on Lagrange equations, the differential equations of motion for the beam elements are established, in a rotating coordinate system and an absolute coordinate system, respectively. 43 generalized coordinates and a model matrix for the mechanism are created and some coordinate matrices are derived. By coupling the coordinate transformation and matrix manipulation, a high nonlinear and strong time-variant elastic dynamic model is obtained. Based on the dynamic model, a Kineto-Elasto Dynamics (KED) analysis and a Kineto-Elasto Static (KES) analysis are carried out, respectively. By comparing and analyzing the simulation results of KED and KES, the regularity of elastic vibration of the clamping mechanism in high-speed clamping process has been revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.