Abstract

Due to the tip-sample interaction which is the measurement principle of Atomic Force Microscope (AFM), tip wear constantly occurs during scanning. The blunt tip caused by the wear process makes more tip geometry information involved in the image, and correspondingly it increases the measurement error. In the present study, the scan parameters of AFM in tapping mode which affect the wear of single crystal silicon tips, such as the approaching rate, the scan rate, the scan amplitude, and the integral gain are investigated. By proposing a parameter reflecting the imaging quality, the tip state tracing the sample surface is evaluated quantitatively. The influences of scan parameters on this imaging quality parameter are obtained by experiments. Finally, in order to achieve the perfect images with little tip wear influence, tip wear experiments are carried out and then the optimal parameter settings which can lighten the tip wear are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call