Abstract

Numerical simulation method was used in this paper to study the effects of partial ossicular replacement prostheses (PORPs) with different materials on hearing restoration, from the biomechanical point of view. According to the CT scan imagery of the right ear from a normal human body, the CT data was digitalized and imported into PATRAN to establish a three dimension finite element model by self-compiling program, and then a frequency response analysis was made for the model. The calculated results were compared with experiment data to verify the correctness of the numerical model. Based on this, human numerical model of PORPs was established to make dynamic calculation of sound conduction and analyse the effects of PORPs with different materials on hearing restoration. The following conclusions are obtained : From the angle of dynamical behaviors in sound conduction process of human ear, in different frequency bands of the same sound pressure, PORPs with different materials have different effects on hearing restoration. A better sound transmission in low frequencies is obtained by PORPs with hydroxyapatite ceramics, stainless steel. In high frequencies, better sound transmission is gained by PORPs with porous polyethylene. In the 500-3,000 Hz range which is clinicians typically measure and pay attention to, better sound transmission is gained by PORPs with alumina ceramics, hydroxyapatite ceramics, EH composite materials and porous polyethylene. There are three materials which has an obvious potential to provide more hearing restoration than another between 500 and 3,000 Hz. The hearing restoration value of hydroxyapatite ceramics is 7.1 dB larger than that of stainless steel. The hearing restoration value of titanium is 4.9 dB larger than that of stainless steel. Hydroxyapatite ceramics has better effects on sound transmission than titanium and other materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call