Abstract

To increase the ion current from the ion source is an important way to improve the performance of the electron cyclotron resonance ion thruster(ECRIT). The ion migration distance, magnetic topology and propellant have a close influence on the extracting ion beam. This influence is studied through both magnetic circuit structure calculation and experiments, by using an ion source with different gate mounting positions and magnet lengths. Experimental results show that the distribution of the ECR region will be discontinuous when the length of the magnet is too short. This will greatly reduce the performance of the ion source. To increase the length of the magnet is beneficial to the beam emission at high gas flow rate, but it reduces the beam emission at low gas flow rate. The effect of the ion migration distance on the ion beam is related to the plasma density in the ion source. When the gas flow rate is low, a longer gate mounting ring is beneficial to increase the ion current. When the gas flow rate is high, the different magnetic topology will cause the gate mounting ring which influences on the ion current. At low gas flow conditions, xenon gas can significantly improve the discharge stability of the ion source and increase the ion current. However, at high gas flow rate, the concentration effect of the neutral particles is too strong that affects the energy accumulation process of the free electrons. This would cause the decrease in the ion current.

Highlights

  • To increase the ion current from the ion source is an important way to improve the performance of the e⁃ lectron cyclotron resonance ion thruster ( ECRIT)

  • The ion migration distance, magnetic topology and propellant have a close influence on the extracting ion beam

  • The effect of the ion migration distance on the ion beam is related to the plasma density in the ion source

Read more

Summary

Introduction

杂共振的条件是 ωHU = ω2pe + ω2ce ,高混杂共振面 随等离子体密度增长向弱磁场区扩展。 长栅极安装 环带来更大的源内空间有利于提高电子加热的范 围,从而提 高栅极表面等离子体密度和引出束流。 对于 ECR 区不连续等离子生成效率较低的离子源, 电子加热方式依然以 ECR 加热为主。 短的栅极安 装环带来更短的离子迁移距离有利于降低复合反应 的碰撞频率,从而提高栅极表面等离子体密度和引 出束流。 因此离子源栅极安装环长度选取应该综合 考虑离子源的磁路结构和工作情况。 2.3 氙和氩工质下离子源束流引出的影响 当气体流量小于 2 mL / min 不管是从引出束流 的大小还是束流引出的稳定性来看,采用氙气工质 的离子源性能明显优于氩气工质。 因为氙气的相对 分子质量大且电离能量小,相同流量情况下,氙气更 易电离,所以在低流量下氙气工质离子源内的等离 子密度要高于氩气工质离子源,最终导致引出束流 的增加。 当气体流量高于 2 mL / min 后,氙气工质的 引出束流随气体流量增加开始出现下降,而氩气工 质的引出束流则继续随流量的增加而增加。 造成这 一现象的原因可能是随着气体流量增加,源内中性 粒子的密度增加,氙气分子由于本身相对分子量较 大扩散能力不强,受进气位置的影响大量氙气分子 聚集在 ECR 共振区附近。 过高的中性粒子密度和 更大分子体积加大了电子与中性粒子之间的碰撞频 率,大量自由电子与中性粒子发生激发碰撞而不是 电离碰撞,所以 ECR 共振区的中性粒子电离受到了 抑制,最终影响等离子体的产生降低了引出束流,同 时提高氙气的流量也会使栅极间的中性粒子密度上 升,加剧了离子在栅极间的损失。 氩气分子具有更 好的扩散性和较小的体积并没有出现碰撞频率过大 的问题, 所以引出束流继续随着气体流量增加而 增加。 子体的平衡状态,对于 ECR 区连续等离子生成效率 高的离子源,长栅极安装环带来更大的离子迁移距 离有利于提高电子与中性粒子的碰撞频率,从而提 高栅极表面等离子体密度和引出束流。 对于 ECR 区不连续等离子生成效率较低的离子源,短的栅极 安装环带来更短的离子迁移距离有利于降低复合反 应的碰撞频率,从而提高栅极表面等离子体密度和 引出束流。 因此离子源栅极安装环长度选取应该综 合考虑离子源的磁路结构和工作情况。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call