Abstract

Rotary ultrasonic machining (RUM) is a relatively low cost and environmentally benign process for machining of advanced ceramics. Much effort has been made to theoretically and experimentally investigate material removal rate, surface roughness, and tool wear in RUM. However, there is no report on systematic study of edge chipping in RUM drilling of ceramics. This paper presents the results of a study on edge chipping in RUM drilling of advanced ceramics. The study is conducted by an integrated approach, combining designed experiments and FEM (finite element method) analysis. The designed experiments will reveal the main effects as well as interaction effects of process variables (spindle speed, ultrasonic power, feedrate, and grit size) on cutting force and chipping thickness. FEM simulations will provide the stress and strain distributions in the workpiece while being drilled by RUM. Furthermore, the relationship between chipping thickness and cutting force obtained from the FEM simulations will be compared with that obtained from the designed experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.