Abstract

To study the reduction in lateral earth pressure due to narrow reinforced earth (RE) wall, which is used for various earth retaining structures such as bridge abutments, retaining walls, and also where the available space for the reinforced earth (RE) walls is less than required. In a narrow RE wall, interface connection will be provided to prevent extensive pressure and cracks which are developed in-between existing wall and narrow RE wall. The main objective of this paper is to evaluate the earth pressure distribution for a narrow RE wall under static and cyclic loading considering the elastic (Flexible) and non-elastic (Rigid) behavior of the wall keeping the same relative density. Two major conditions, i.e., rigid boundary condition and flexible condition, which is used to perform a series of load–displacement and load-settlement test on the RE wall model using uniaxial geogrid reinforcement. The load–displacement-settlement is measured by using a conventional high capacity compressive mechanical jack and dial gauges. To validate the experimental results, the earth pressure distribution using Arching theory, Rankine theory, Coulomb theory. From results and analysis, there was a considerable variation is determined in load–displacement characteristics for both flexible and rigid boundary conditions. The percentage reduction in earth pressure was also observed in the case of a flexible RE wall as compared to a rigid narrow RE wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call