Abstract

The effects of different flyash content, steel fibre content and water-binder ratio on the dynamic compressive strength of alkali-activated slag high performance concrete (ASHPC) were studied. When flyash and water-binder ratio rose, the dynamic compressive strength of ASHPC fell by 27.3% and 23.5%, respectively, and increased by 81.6% when steel fibre content increased. The dynamic elastic modulus rises by 35.0% with an increase in steel fibre content and falls by 48.0% and 65.6%, respectively, with an increase in flyash content and water-binder ratio. The toughness conversion ratio and pre-peak toughness ratio dropped by 34.1% and 9.5%, respectively, whereas the post-peak toughness ratio rose by 36.4% with an increase in flyash content. The test block’s pre-peak toughness ratio and toughness conversion ratio increased by 12.7% and 60.0%, respectively, with an increase in steel fibre , whereas the post-peak toughness ratio declined by 31.0%. With the increase of water-binder ratio, the pre-peak toughness ratio and toughness conversion rate of the test block increased by 31.0 % and 132 %, respectively, and the post-peak toughness ratio decreased by 42.8 %. The energy absorption and reflection rise while the energy transmission falls as flyash concentration and the water-binder ratio rise. The transmission energy rises as the amount of steel fibre grows, while the energy absorption and reflection fall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call