Abstract
This paper aims to study the action mechanism of basalt fiber on concrete and the internal damage evolution of basalt fiber reinforced concrete (BFRC) in Brazilian disc splitting tensile tests using acoustic emission (AE) technology and digital speckle correlation method (DSCM). The effects of loading rate and basalt fiber content on splitting tensile failure mode and deformation capacity of BFRC, as well as AE frequency domain characteristics were investigated herein. Then the strain field and local damage factor of BFRC under dynamic splitting tensile load were analyzed based on DSCM. The results indicate that the increase of loading rate and basalt fiber content can change the failure into a complex tensile-shear mixed failure. And the deformation capacity of BFRC can be considerably enhanced by adding a proper amount of basalt fibers. It is also found that the damage degree and damage mechanism of BFRC can be identified by analyzing the wavelet peak frequency of specific frequency range. Furthermore, the crack evolution of BFRC under dynamic splitting tensile load can be reflected well on the change of strain field nephogram of BFRC obtained by DSCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.