Abstract
In view of the frequent occurrence of strong earthquakes and the actual characteristics of buildings built on the top of slopes in the loess region of Western China, the dynamic response and stability law of loess slope under the building load on the top of the slope are discussed by using the three-dimensional finite element numerical calculation method. Taking the slope safety factor, acceleration amplification coefficient, building permanent displacement and slope sliding range as evaluation indexes, the dynamic safety of buildings on the top of the slope under earthquake is analyzed, and the recommended value of dynamic safety distance between top building and slope shoulder is put forward. The results show that: firstly, affected by the amplification effect of slope elevation, the dynamic response of buildings on the top of slope is stronger than that of buildings under slope. At the same time, affected by the amplification effect of the free surface of the slope, the dynamic response amplitude of the building is negatively correlated with the distance from the slope shoulder. Secondly, the horizontal acceleration ratio between the top building and the under building is the largest at the height of 3–6 m, indicating that the multi-storey building with pile raft foundation is most prone to damage at this height. Thirdly, the dynamic safety distance of multi-storey buildings with pile raft foundation located on the top of loess slope with slope height H ≤ 30 m and slope gradient 25° ≤ α ≤ 70° can be 24 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.