Abstract
The effect of deformation temperature and strain rate on the recrystallization behavior of ultra-high strength hot formed 22MnB5 steel was systematically studied by isothermal compression experiments, and the microstructure was characterized and analyzed. The results show that the peak stress and peak strain of 22MnB5 steel decrease with increasing deformation temperature and increase with increasing strain rate. The dynamic recrystallization of 22MnB5 steel is more sensitive to temperature and less affected by strain rate. The recrystallization behavior is significant during isothermal deformation above 1323 K. Based on the hyperbolic sinusoidal constitutive equation, the accurate prediction model of dynamic recrystallization grain size and a dynamic recrystallization critical strain model for 22MnB5 steel were established. The relationship between recrystallization austenite grain size and deformation temperature and deformation amount was obtained as follows: d=4.1×103[ε·exp(350.38/RT)]. The critical strains of complete recrystallization and complete non-crystallization at each deformation temperatures were determined by the critical strain model, which can provide a basis for the optimization design of rolling process parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.