Abstract

In nonlinear chemical processes, many economically desirable operating conditions are located in unstable regions, leading to product quality degradation and safety problems. Therefore, determining how to adjust the dynamic behavior to make the process stable within its desired operational range is a topic of common interest within industrial and academic communities. This article presents a dynamic behavior adjustment method based on a washout filter‐aided controller with an improved parameter‐tuning algorithm to stabilize parts of the equilibrium manifold of chemical processes. In addition, applying this method to industrial toluene liquid‐phase catalytic oxidation shows that, by combining a conventional proportional‐integral (PI) controller with the proposed improved washout filter‐aided controller, the performance of set‐point tracking is improved for cases with parameter uncertainty. In general, the proposed dynamic behavior adjustment method will be effective for most chemical processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3189–3198, 2016

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.