Abstract

Ca–ZrO2 is an essential structural and functional material, which is commonly used in refractories, electronic ceramics, and functional ceramics. The properties of Ca–ZrO2 materials are depending on the quality of Ca–ZrO2 powders. The main factors affecting the quality of powder are sintering temperature and the drying effect. This paper applied modern microwave drying technology to dry Ca–ZrO2 powder. The impact of initial mass, microwave heating power, and initial moisture content on the drying of Ca–ZrO2 were explored. The results showed that the average drying rate increased with the rise of initial mass, microwave heating power, and initial moisture content. Wang and Singh, Page, and Quadratic Model were applied to fit Ca–ZrO2 with an initial moisture content of 5.6%, mass of 30 g, and microwave output power of 400 W. The results displayed that the Page model had a better fitting effect. It was also applicable to other different initial moisture content, original mass, and microwave heating power. The diffusion coefficient calculated by Fick's second law displayed that with the increase of initial mass, initial moisture content, and microwave heating power of Ca–ZrO2, the effective diffusion coefficient increased first and then declined. When the Ca–ZrO2 of microwave heating power was 640 W, mass was 30 g, and the moisture content was 5.65%, the effective diffusion coefficients of zirconia were 1.42533 × 10−13, 2.91806 × 10−13, 5.652.2471 × 10−13 m2/s, respectively. To determine the activation energy of microwave dried zirconia, using the relationship between microwave power and activation energy, the activation energy of microwave dried zirconia was calculated to be −23.39 g/W. This paper aims to rich experimental data for the industrial application of microwaves to strengthen dried zirconia and propose a theoretical basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call