Abstract
As far as medical diagnosis problem is concerned, predicting the actual disease in complex situations has been a concerning matter for the doctors/experts. The divergence measure for intuitionistic fuzzy sets is an effective and potent tool in addressing the medical decision making problems. We define a new divergence measure for intuitionistic fuzzy sets (IFS) and its interesting properties are studied. The existing divergence measures under intuitionistic fuzzy environment are reviewed and their counter-intuitive cases has been explored. The parameter α is incorporated in the proposed divergence measure and it is defined as parametric intuitionistic fuzzy divergence measure (PIFDM). The different choices of the parameter α provide different decisions about the disease. As we increase the value of α, the information about the disease increases and move towards the optimal solution with the reduced in the uncertainty. Finally, we compare our results with the already existing results, which illustrate the role of the parameter α in obtaining the optimal solution in the medical decision making application. The results demonstrate that the parametric intuitionistic fuzzy divergence measure (PIFDM) is more comprehensive and effective than the proposed intuitionistic fuzzy divergence measure and the existing intuitionistic fuzzy divergence measures for decision making in medical investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.