Abstract

The molecular dynamics method is used to investigate the formation and properties of irradiation-induced damage (point defects). Displacement cascade simulations are performed to study the effects of primary knock-on atom (PKA) energy, temperature, vacancy concentration and tensile pre-strain on irradiation-induced damage in [Formula: see text]-Fe. An increase in PKA energy, vacancy concentration and tensile pre-strain can lead to an increase in defect numbers. In contrast, an increase in temperature decreases the defect numbers. After cascade collisions, tensile tests are performed to investigate the effect of point defects on mechanical properties. The yield stress and corresponding strain of irradiated Fe decrease with an increase in the number density of Frenkel pairs. Results show that irradiation accelerates damage of the internal structure, decreases the number of slip bands and increases the instability of the structure during plastic deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call