Abstract

AbstractUnderstanding the complex mechanism of dispersion and intercalation of the clay tactoids can allow us to control the final morphology, homogeneity, and the macroscopic properties of clay nanocomposites. The objective of this work is a multiscale study of the dispersion state of PP/organoclay and PP‐g‐MA/organoclay composite. The microscopic investigation, WAXS diffractograms, rheological analysis, and mechanical properties were used to characterize the dispersion of organoclay in PP and PP‐g‐MA matrices during melt blending in two different shear rates. The morphological results show a system of aggregating intercalated clay particles which disperse by increasing mixing time with a strain‐controlled process and a very quick intercalation process in early mixing times for PP‐g‐MA/organoclay nanocomposite, while PP/organoclay samples only form microcomposites. The relative network modulus of these intercalated particles as a function of mixing time was obtained; and the tensile modulus of nanocomposite samples were compared with Halpin‐Tsai model prediction. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call